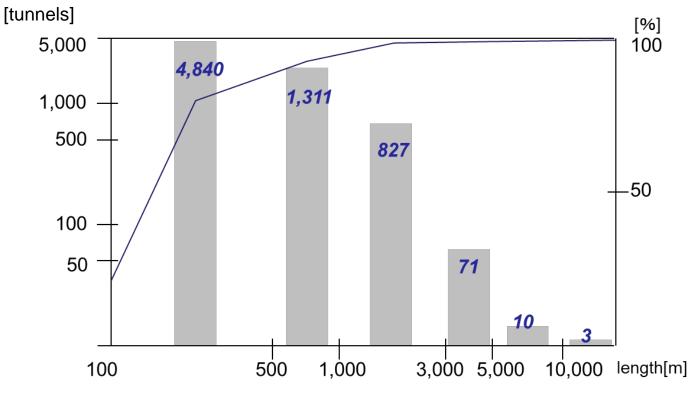


Risk assessment of zero-flow ventilation strategy for fires in bi-directional tunnels with longitudinal ventilation

Ichiro Nakahori and Toshiaki Sakaguchi, Sohatsu Systems Laboratory Inc. Bernhard Kohl and Christoph Forster, ILF Consulting Engineers Alan Vardy, University of Dundee


Contents

- Background and objective of paper
- Zero-flow control strategy in tunnel fires
- Methodical approach
- Results of assessment in a typical tunnel
- Analysis of assessment
- Conclusions

Tunnels in Japan

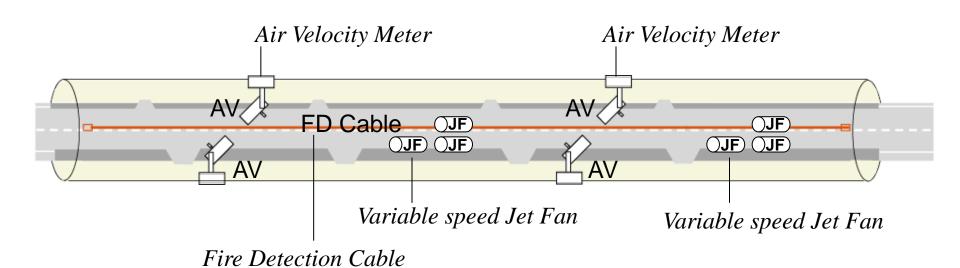
Distribution map over tunnel length

Background

- In single tube tunnels with bidirectional operation & longitudinal ventilation, fires can be especially dangerous
- Cars will queue on both sides of the fire. No option for smoke management will avoid endangering people
- In this situation, the fire operation mode of the longitudinal ventilation will strongly influence self-rescue opportunities
- Two main strategies are used: 1. blow smoke in a controlled direction at low speed; 2. switch off the ventilation system

Objectives of paper

- Use risk-assessment to assess the merits of zero-flow control as a ventilation strategy in fire emergencies
- Two methods of risk assessment are proposed and applied to a bi-directional, longitudinally-ventilated tunnel in Japan:
 - 1) deterministic; 2) probabilistic [TuRisMo2]


Zero-flow control strategy in tunnel fires

- Zero-flow control was first applied in the Kan-etsu Tunnel in Japan (1985 BHR)
- Few subsequent applications because of difficulty in achieving stable zero-flow conditions with old technology
- Modern speed control eliminates this drawback e.g. inverter-driven jet-fans for speed control (2009 BHR)

Realization of zero-flow control at the Yoka Tunnel

Equipment for zero-flow response to fire

Realization of zero-flow control at the Yoka Tunnel

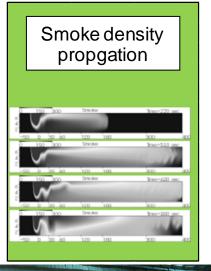
16th International Symposium

ISAVFT 2015

Aerodynamics, Ventilation & Fire in Tunnels

Methodical approaches

- Deterministic scenario-based approach common in Japan
 - select and simulate specific fire scenarios assess results as "safe" or "fatal"
- Probabilistic, system-based approach used in several European countries (e.g. Austrian Tunnel Risk Model)
 - develop and assess a representative set of scenarios simulate a standard set of fire scenarios calculate overall risk (expected risk value)


Methodical approaches – 1

Scenario-based approach: select and assess specific scenarios

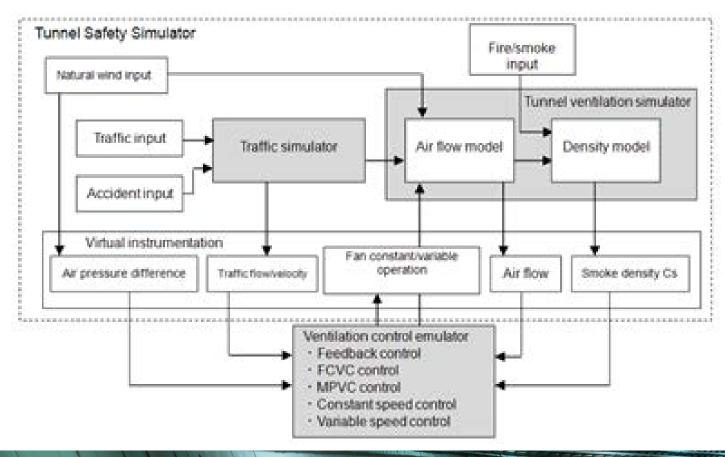
Scenario analysis -Fire scale, Fire location, Natural wind, Traffic flow, Vehicle speed, Traffic congestion

 S_0 S111

Consequence analysis: Worst scenario

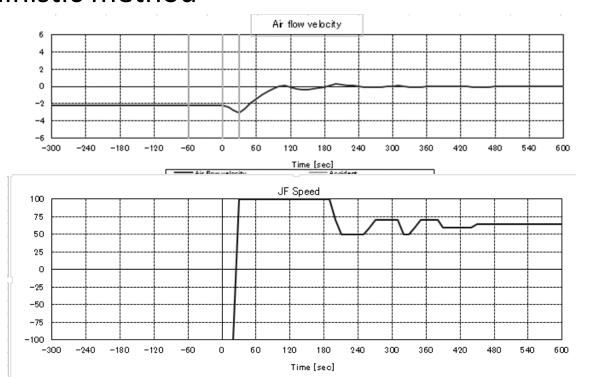
Results

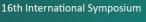
SAFE


FATAL

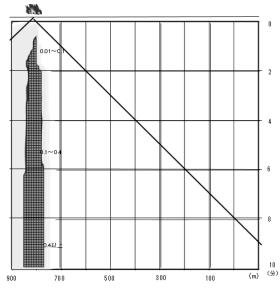
10

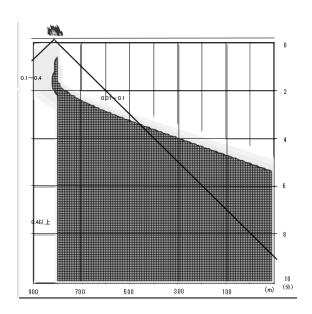
Methodical approaches – 1


16th International Symposium


11

Evolution of air-flow velocity and jet-fan output in deterministic method

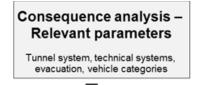


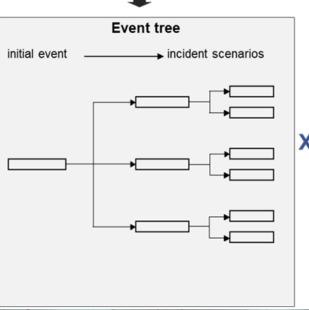


Smoke density evolution and path of escapee in deterministic method

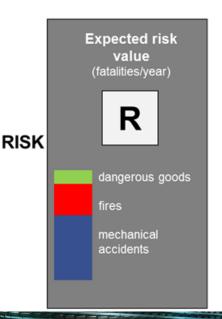
Zero-flow

Shutdown

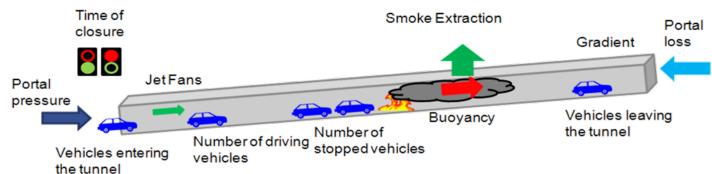


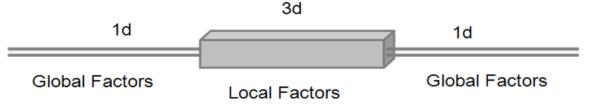

Method 2: System-based approach


integrated, holistic assessment of the whole tunnel system



16th International Symposium




TuRisMo consequence analysis: smoke propagation

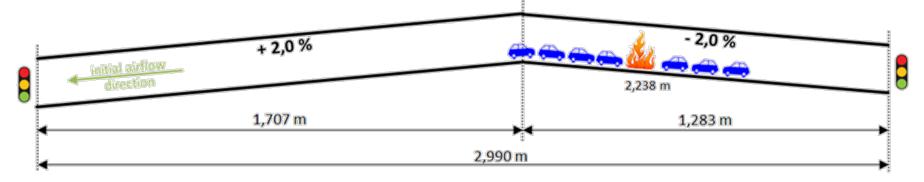
Combined unsteady 1D/3D Simulations

Influencing Factors

Implementation

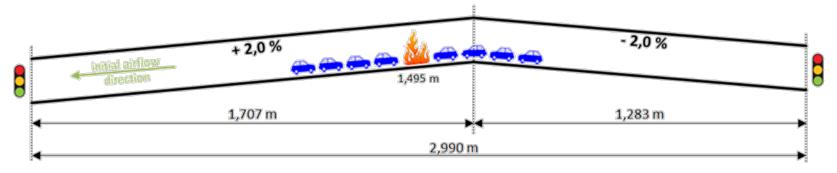
TuRisMo consequence analysis: evacuation model

- Output of smoke propagation simulation: temperature, flue gas concentrations, extinction coefficient at a height of 1.6m
- Transferred directly into egress model, influencing the movements of people during evacuation
- Visibility influences walking speed, accumulated physiological effects may cause immobility (Purser model)

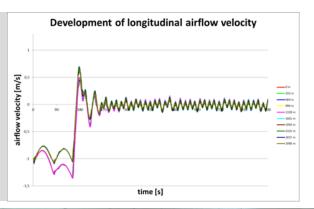


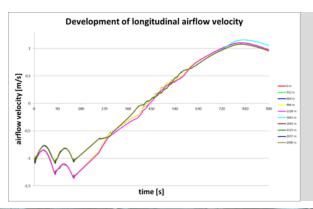
Definition of a model tunnel

Tunnel system	Bidirectional tunnel with 1 tunnel tube and 1 lane per direction	
Emergency exits	From 0 to 5	
Tunnel cross section	Vaulted, 71m² (8.4 m diameter)	
Traffic volume	1,438 vehicles/hour	
Traffic mix	69.5 % passenger cars 30.5 % HGV (incl. busses)	
Traffic speed	80 km/h	


Austrian Tunnel Risk Model: broad range of many different scenarios with varying parameters, taken into account in a statistical manner

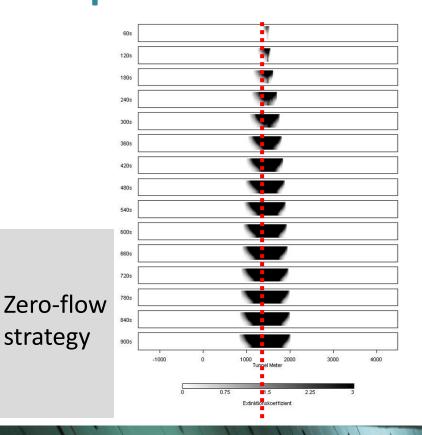
- 3 fire sizes (5MW, 30MW, 100MW)
- 5 fire locations— 3 in uphill, 2 in downhill section
- 9 traffic scenarios (3 different traffic loads combined with 3 different symmetry scenarios)
- All together 135 fire / traffic combinations simulated for the model tunnel

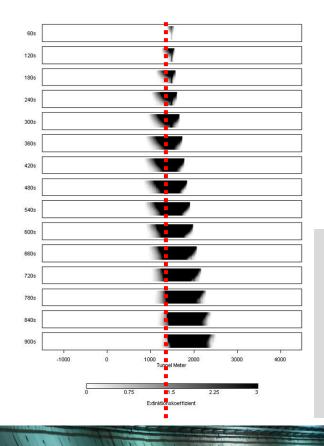




Demonstration of effects of the two ventilation strategies on the basis of one selected scenario (30MW fire in central tunnel section)

Zero-flow strategy


Shutdown strategy


16th International Symposium

Smoke propagation of a 30MW fire in time steps

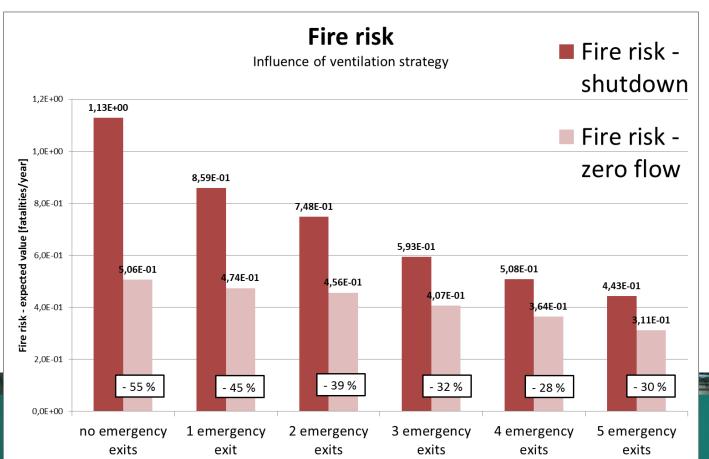
Shutdown strategy

16th International Symposium

ISAVFT 2015

strategy

Aerodynamics, Ventilation & Fire in Tunnels


Smoke propagation of a 30MW fire in time steps

- Initial airflow towards left side (operational ventilation), smoke propagates towards left side within the first 2-3 minutes, no difference between ventilation strategies
- Later the zero-flow strategy leads to smoke propagation to both sides at low speed
- The shutdown strategy leads to a change in direction of smoke propagation after 8-10 minutes (due to longitudinal ventilation and buoyancy effects)
- The shutdown strategy leads to considerably higher smoke propagation velocities and hence to a reduction of self rescue chances

Fire risk in dependence of ventilation strategy and emergency exit distance – outcome of statistical approach

Pros & Cons of different methodical approaches

	Pros	Cons
Scenario Analysis (deterministic)	 Easy to understand results Enable to customize scenario to each tunnel Statistical frequency data not required 	Will not represent whole scenarios
TuRisMo 2 (probabilistic)	 Outcomes of all scenarios included in composite overall result Systematic quantitative assessment of safety measures Allows look in detail at intermediate results 	 No feedback between fire growth and other parameters (e.g. longitudinal airflow velocities)

Conclusions

- Two risk assessment approaches have been presented to assess zero-flow control as risk mitigation strategy for tunnel fires in bidirectional, longitudinally ventilated tunnels: a scenario based determistic approach and a system based probabilistic approach
- Both approaches demonstrate that the zero-flow strategy ensures more opportunities to evacuate safely than the shutdown strategy
- The system-based approach shows that the zero-flow strategy reduces the expected total fire risk by 50% (without emergency exits)
- The relative advantage reduces with increasing number of emergency exits (e.g. to 30% with an emergency exit distance of 500m)

Thank you!

CONTACT:

Toshiaki Sakaguchi, Sohatsu Systems Laboratory Inc. - toshiaki.sakaguchi@verizon.net **Bernhard Kohl, ILF Consulting Engineers** - bernhard.kohl@ilf.com **Alan Vardy, University of Dundee** - a.e.vardy@dundee.ac.uk